The Möbius function of separable and decomposable permutations
نویسندگان
چکیده
We give a recursive formula for the Möbius function of an interval [σ, π] in the poset of permutations ordered by pattern containment in the case where π is a decomposable permutation, that is, consists of two blocks where the first one contains all the letters 1, 2, . . . , k for some k. This leads to many special cases of more explicit formulas. It also gives rise to a computationally efficient formula for the Möbius function in the case where σ and π are separable permutations. A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums or, equivalently, if it avoids the patterns 2413 and 3142. A consequence of the formula is that the Möbius function of such an interval [σ, π] is bounded by the number of occurrences of σ as a pattern in π. We also show that for any separable permutation π the Möbius function of (1, π) is either 0, 1 or −1.
منابع مشابه
The Möbius Function of Separable and Decomposable
We give a recursive formula for the Möbius function of an interval [σ, π] in the poset of permutations ordered by pattern containment in the case where π is a decomposable permutation, that is, consists of two blocks where the first one contains all the letters 1, 2, . . . , k for some k. This leads to many special cases of more explicit formulas. It also gives rise to a computationally efficie...
متن کاملOn the topology of the permutation pattern poset
The set of all permutations, ordered by pattern containment, forms a poset. This paper presents the first explicit major results on the topology of intervals in this poset. We show that almost all (open) intervals in this poset have a disconnected subinterval and are thus not shellable. Nevertheless, there seem to be large classes of intervals that are shellable and thus have the homotopy type ...
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملOn the Möbius Function of Permutations with One Descent
The set of all permutations, ordered by pattern containment, is a poset. We give a formula for the Möbius function of intervals [1, π] in this poset, for any permutation π with at most one descent. We compute the Möbius function as a function of the number and positions of pairs of consecutive letters in π that are consecutive in value. As a result of this we show that the Möbius function is un...
متن کاملThe Möbius function of permutations with an indecomposable lower bound
We show that the Möbius function of an interval in a permutation poset where the lower bound is sum (resp. skew) indecomposable depends solely on the sum (resp. skew) indecomposable permutations contained in the upper bound, and that this can simplify the calculation of the Möbius sum. For increasing oscillations, we give a recursion for the Möbius sum which only involves evaluating simple ineq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 118 شماره
صفحات -
تاریخ انتشار 2011